mssm Documentation
This is the documentation of the public API of mssm
. The entire source code is available for inspection on GitHub.
mssm
is a Python toolbox to estimate Generalized Additive Mixed Models (GAMMs), Generalized Additive Mixed Models of Location Scale
and Shape (GAMMLSS), and more general smooth (mixed) models (GSMMs) in the sense defined by Wood, Pya, & Säfken (2016).
mssm
is an excellent choice for the modeling of multi-level time-series data, often estimating additive models with separate smooths for thousands of levels in a couple of minutes.
You can either use the side-bar on the left to navigate through the document tree or click on the links below. To get started, we suggest that you first work through the Getting Started
section, which includes installation instructions. Then you should complete the Tutorial, in which you will familiarize yourself with the syntax of mssm
and the mssmViz package. mssmViz
offers functions to visualize & validate models estimated via the mssm
toolbox. If you are interested in adding your own custom smooth basis and penalty matrices, head to the Programmer’s Guide section.
If you just want to take a look at the api, check out the api section.
Getting Started
Tutorial
Programmer’s Guide
api
- api
- mssm.models module
- mssm.src.python.compact_rep module
- mssm.src.python.compare module
- mssm.src.python.custom_types module
- mssm.src.python.exp_fam module
- mssm.src.python.file_loading module
- mssm.src.python.formula module
- mssm.src.python.gamm_solvers module
PIRLS_newton_weights()
PIRLS_pdat_weights()
apply_eigen_perm()
back_track_alpha()
calculate_edf()
calculate_term_edf()
check_drop_valid_gammlss()
check_drop_valid_gensmooth()
compute_S_emb_pinv_det()
compute_eigen_perm()
compute_lgdetD_bsb()
computetrVS3()
correct_coef_step()
correct_coef_step_gammlss()
correct_coef_step_gen_smooth()
correct_lambda_step()
correct_lambda_step_gamlss()
correct_lambda_step_gen_smooth()
deriv_transform_eta_beta()
deriv_transform_mu_eta()
drop_terms_S()
drop_terms_X()
extend_lambda_step()
form_cross_prod_mp()
form_eta_mp()
gd_coef_smooth()
grad_lambda()
handle_drop_gammlss()
handle_drop_gsmm()
identify_drop()
init_step_gam()
initialize_extension()
keep_XTX()
keep_eta()
newton_coef_smooth()
read_XTX()
read_eta()
read_mmat()
restart_coef()
restart_coef_gammlss()
solve_gamm_sparse()
solve_gamm_sparse2()
solve_gammlss_sparse()
solve_generalSmooth_sparse()
step_fellner_schall_sparse()
test_SR1()
undo_extension_lambda_step()
update_PIRLS()
update_coef()
update_coef_and_scale()
update_coef_gammlss()
update_coef_gen_smooth()
update_scale_edf()
- mssm.src.python.matrix_solvers module
compute_B()
compute_Linv()
compute_block_B_shared()
compute_block_B_shared_cluster()
compute_block_linv_shared()
cpp_backsolve_tr()
cpp_chol()
cpp_cholP()
cpp_dqrr()
cpp_qr()
cpp_qrr()
cpp_solve_L()
cpp_solve_LXX()
cpp_solve_am()
cpp_solve_coef()
cpp_solve_coefXX()
cpp_solve_coef_pqr()
cpp_solve_qr()
cpp_solve_tr()
cpp_symqr()
est_condition()
map_csc_to_eigen()
map_csr_to_eigen()
translate_sparse()
- mssm.src.python.penalties module
- mssm.src.python.repara module
- mssm.src.python.smooths module
- mssm.src.python.terms module
- mssm.src.python.utils module
DummyRhoPrior
GAMLSSGSMMFamily
REML()
RhoPrior
adjust_CI()
approx_smooth_p_values()
computeAr1Chol()
compute_REML_candidate_GSMM()
compute_Vb_corr_WPS()
compute_Vp_WPS()
compute_bias_corrected_edf()
compute_reml_candidate_GAMM()
correct_VB()
estimateVp()
print_parametric_terms()
print_smooth_terms()
sample_MVN()
updateVp()