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Introduction Semi-Markov-Switching Pupil Models

* Pupil dilation indirectly reflects cognitive processing'
Combining HsMMs and GAMMs to Perform Trial-level Deconvolution

° Pu Pil d ECOI‘IVOI Utio n a'i ms to recover Cogn Itlve events Hidden semi-Markov Models Generalized Additive Mixed Models

underlying the pupil dilation time course®>
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. . o : capture stage duration parameterized with time- regularize spline flexibility’
* Responses are constrained to be positive™, negative variability across trials® shifted smoothing spline’
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dilation values are modeled via drift** or offset’ o & >PH Random effects can be
e * Can differ between * Can have separate splines incorporated via shrinkage
* Events are recovered from average dilation time courses, , . , N :
experimental conditions per experimental condition penalty

neglecting trial-level variability in event onset*>

Preliminary Results

Testing sMs IR GAMM s via Lexical Decisions Six Processing Stages are involved in LDs for Words and Non-words

Frequency Effect on Response Times Shifted Event Responses Average Stage Duration Model Fit
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What can Trial-level Pupil Deconvolution reveal about the
processing stages involved in LDs and the effect of Early and late processing stages are similar in duration for all word types.Visible duration differences between
frequency on these stages? word types can only be observed in the fourth stage!

Frequency and Word Type Effects on RTs are reflected in Stage Four
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* Model appears to allocate first pupil response to stimulus onset on most trials * Stage four shows the most pronounced effects of word type and frequency
* First robust word type and frequency interaction visible in stage 3 (< 200 ms) * The pattern in stage six is qualitatively quite similar to stage four

Discussion

e Model fit is not great, more complex random effects could help
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